0957-4166/94 \$7.00+0.00

0957-4166(94)00172-3

Determination of the Absolute Configuration of a Tetracyclic Drimane Sesquiterpenoid by Mosher's Method

Robert Veltena, Wolfgang Steglicha,* and Timm Ankeb

^a Institut für Organische Chemie der Ludwig-Maximilians-Universität, Karlstraße 23, D-80333 München, Germany
^b Lehrbereich Biotechnologie der Universität, Paul-Ehrlich-Str. 23, D-67663 Kaiserslautern, Germany

Abstract: The high field NMR application of the Mosher method has been successfully applied to determine the absolute configuration of a tetracyclic dihydroxydrimane derivative. The result indicates that highly functionalized drimanes from basidiomycetes correspond in their stereochemistry to (-)-drimenol.

Tetracyclic drimane sesquiterpenoids with a dioxacyclooctane moiety are characteristic metabolites of several basidiomycetes. Ayer et al.^{1,2} obtained marasmene (1) and some closely related derivatives, e. g. marasmone (2) and 1α , 15-dihydroxymarasmene (3), from cultures of *Marasmius oreades*. 3 is also produced by a Canadian *Mniopetalum* species in addition to mniopetal A (4) and allied compounds which are potent inhibitors of reverse transcriptases^{3,4}. A drimane derivative 5 with similar biological activity has recently been isolated from cultures of a Tasmanian *Kuehneromyces* species⁵.

1230 R. VELTEN et al.

The absolute stereochemistry of these highly functionalized drimanes has not yet been determined. We chose the high field NMR modification of Mosher's method^{6,7} for this purpose and applied it to $(+)-1\alpha$, 15-dihydroxymarasmene (3)8 which occurs as a mixture of its C-15 epimers.

Treatment of 3 with both (R)-(-)- and (S)-(+)- α -methoxy- α -(triffuoromethyl)pheaylacetyl chloride (MTPA-Cl) in the presence of 4-(dimethylamino)pyridine (DMAP) yielded the (S)- and (R)-di-MTPA esters 6a and 6b, respectively. In each case only the C-15 exo epimer was formed.

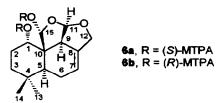


Table 1. ¹H NMR data of (S)- and (R)-di-MTPA esters 6a and 6b, respectively (400 MHz; δ values in ppm; in CDCl₃); $\Delta \delta = \delta(6a) - \delta(6b)$ ($\Delta \delta$ values in Hz).

		6 a			6b		
	δ [ppm]		J [Hz]	δ [ppm]		J [Hz]	Δδ [Hz]
1-H	5.23	dd	2.5/2.5	5.26	dd	2.5/2.5	-12
2α-Η	1.45	dddd	15.0/3.0/3.0/2.5	1.65	dddd	15.0/3.0/3.0/2.5	-80
2β-Η	1.40	dddd	15.5/15.0/4.0/2.5	1.99	dddd	15.0/14.8/4.0/2.5	-236
3α-Н	1.15	ddd	15.5/13.0/3.0	1.41	ddd	14.8/13.0/3.7	-104
зβ-Н	0.81	ddd	13.0/4.0/3.0	1.18	ddd	13.0/3.7/3.0	-148
5-H	1.76	dd	11.5/6.2	1.87	dd	11.5/6.2	-44
6α-Η	2.27	dm	18.5	2.32	dm	18.5	-20
6β-Н	2.02	ddm	18.5/11.5	2.10	ddm	18.5/11.5	-32
7-H	5.71	s, br		5.69	s, br		+8
9-H	2.57	s, br		2.33	s, br		+96
11-H	5.60	d	3.6	5.48	d	3.6	+48
12-H	4.25	d, br	11.0	4.14	d, br	11.0	+44
	4.35	d, br	11.0	4.31	d, br	11.0	+16
13-H	0.73	s		0.88	s		-60
14-H	0.19	s		0.66	s		-188
15-H	6.13	s		6.20	s		-28

MTPA plane

(MeO) (Ph) (R)

Ph OMe (S)

$$\Delta \delta < 0 \begin{cases} H \\ H \end{cases}$$

$$A \delta > 0 \begin{cases} H \\ H \end{cases}$$

$$A \delta > 0 \begin{cases} H \\ H \end{cases}$$

$$A \delta > 0 \begin{cases} H \\ H \end{cases}$$

$$A \delta = 0 \end{cases}$$

$$A \delta$$

Figure 1. (A) Model to determine the absolute configurations of MTPA derivatives⁶. (B) Δδ values obtained for the MTPA esters of (+)-1α,15-dihydroxymarasmene (3). Δδ values in Hz (400 MHz).

¹H NMR analysis of each diester and placing all protons with $\Delta\delta > 0$ on the right side of the MTPA planes and those with $\Delta\delta < 0$ on the left side as shown in Fig. 1^{6,7} leads to the S-configuration at C-1 and C-15 of (+)-1α,15-dihydroxymarasmene (3). Molecular models indicate that both MTPA residues exert a cooperative anisotropic effect in the diesters 6a and 6b, the MTPA residue at C-15 having a major influence on the protons at rings A and C. Due to the effect of both MTPA residues, the observed chemical shift differences are much higher than in the examples given in the literature^{6,7}.

The absolute configuration of $(+)-1\alpha$, 15-dihydroxymarasmene (3) corresponds to that of (-)-drimenol⁹ and other drimane derivatives from higher plants, liverworts and fungi¹⁰. Since the remaining drimanes from *Marasmius oreades* and *Mniopetalum* sp. are biogenetically closely related to 3 the same stereochemistry can be proposed for these compounds. In the case of (-)-11, 12-dihydroxydrimene⁴ from *Mniopetalum* sp. this has been proved by total synthesis¹¹.

Experimental: Spectral data were recorded on the following instruments: ¹H and ¹³C NMR, Bruker AC-200 and AM-400; EI-MS, A.E.I. MS-50; IR, Perkin-Elmer 1420; UV, Varian Cary 17; CD, Jobin Yvon CNRS Roussel-Jouan Dichrographe III. Optical rotations were recorded with a Perkin Elmer 241 polarimeter. The mp's were determined with a Reichert hot-plate microscope and are uncorrected. Merck silica gel 60 (230–400 mesh) was used for flash chromatography. TLC was carried out on aluminium foils coated with silica gel Merck 60 F₂₅₄. All solvents were distilled prior to use.

Preparation of (S)- and (R)-MTPA Ester 6a and 6b: To a solution of 3 (13.5 mg) in CH_2Cl_2 (2.5 ml) were added successively DMAP (50 mg), NEt_3 (20 µl), and a solution of (R)-(-)- [or (S)-(+)-] MTPA-Cl (50 mg) in CH_2Cl_2 (1 ml). After stirring at 20 °C for 16 hours, the reaction mixture was diluted with Et_2O (40 ml) and washed consecutively with saturated aqueous NH_4Cl (2 x 30 ml), saturated aqueous NH_4Cl (2 x 30 ml), saturated aqueous NH_4Cl (2 x 30 ml), saturated aqueous NH_4Cl (2 x 30 ml). The organic phase was dried (Na_2SO_4) and evaporated to give an oil, which was chromatographed on a silica gel column. Elution with petroleum ether₄₀₋₆₀ - EtOAc (10:1) gave (S)-MTPA-ester 6a (12.4 mg) or (R)-MTPA-ester 6b (8.5 mg), respectively. (S)-MTPA-ester 6a: colorless oil; R_f 0.56 (petroleum

1232 R. VELTEN et al.

ether₄₀₋₆₀ – EtOAc, 5:1); $[\alpha]_D^{20}$ +13 (c 0.60, CHCl₃); UV λ_{max}^{MeCN} nm (ϵ_{rel}) 208 (sh. 1), 256 (0.07); IR (KBr) cm⁻¹ 2940, 1755, 1446, 1271, 1238, 1171, 1124, 1083, 1037, 996, 944, 865, 725; ¹H NMR, Table 1; HREI-MS (70 eV; DI 180 °C) m/z (relative intensity %) 698.2318 (12, M⁺, calcd for $C_{35}H_{36}O_8F_6$ 698.2315), 466 (51), 465 (92), 464 (40), 232 (41), 231 (89), 203 (80), 202 (59), 201 (60), 190 (43), 189 (100), 173 (50), 105 (78). (R)-MTPA-ester 6b: colorless oil; R_f 0.45 (petroleum ether₄₀₋₆₀ – EtOAc, 5:1); $[\alpha]_D^{20}$ +72 (c 0.40, CHCl₃); UV λ_{max}^{MeCN} nm (ϵ_{rel}) 208 (sh. 1), 258 (sh. 0.09); IR (KBr) cm⁻¹ 2940, 1745, 1450, 1271, 1246, 1215, 1167, 1116, 1077, 1031, 1015, 990, 859, 720; ¹H NMR, Table 1; HREI-MS (70 eV; DI 180 °C) m/z (relative intensity %) 698.2317 (2, M⁺, calcd for $C_{35}H_{36}O_8F_6$ 698.2315), 465 (89), 464 (39), 231 (87), 203 (71), 202 (55), 201 (82), 189 (100).

Acknowledgement: We thank the Deutsche Forschungsgemeinschaft for financial support of this work.

References and Notes

- 1. W. A. Ayer, P. A. Craw, T. J. Stout and J. Clardy, Can. J. Chem. 1989, 67, 773.
- 2. W. A. Ayer, and P. A. Craw, Can. J. Chem. 1989, 67, 1371.
- 3. A. Kuschel, T. Anke, R. Velten, D. Klostermeyer, W. Steglich and B. König, J. Antibiot., submitted.
- 4. R. Velten, D. Klostermeyer, B. Steffan, W. Steglich, A. Kuschel and T. Anke, J. Antibiot., submitted.
- G. Erkel, K. Lorenzen, T. Anke, R. Velten, A. Gimenez and W. Steglich, Z. Naturforsch., Part C, submitted.
- 6. I. Ohtani, T. Kusumi, M. O. Ishitsuka and H. Kakisawa, Tetrahedron Lett. 1989, 30, 3147.
- I. Ohtani, T. Kusumi, M. Y. Kashman and H. Kakisawa, J. Am. Chem. Soc. 1991, 113, 4092. For further applications of this method compare e. g.: M. D. Preite, J. Zinczuc, M. I. Colombo, J. A. Bacigaluppo, M. Gonzáles-Sierra and E. A. Rúveda, Tetrahedron: Asymmetry 1993, 4, 17; G. Cimino, A. Crispino, R. de A. Epifanio, A. Madaio, C. A. Mattia, L. Mazzarella, R. Puliti, E. Trivellone and M. Uriz, Tetrahedron 1992, 48, 9013; S. V. Ley, H. Lovell and D. J. Williams, J. Chem. Soc., Chem. Commun. 1992, 1304.
- 8. In ref. 2 the optical rotation of 3 is not given. We have therefore oxidized (+)-3 from Mniopetalum sp. with pyridinium dichromate to (+)-marasmen-1,15-dione which exhibited the same m.p. and sign of optical rotation as the dione obtained by oxidation of 1α,15-dihydroxymarasmene from Marasmius oreades (ref. 2). The negative sign of [θ]₂₉₉ in the CD spectrum of (+)-marasmen-1,15-dione given in ref. 2 should be corrected to positive.
- 9. H. H. Appel, C. J. W. Brooks, and K. H. Overton, J. Chem. Soc. 1959, 3322.
- 10. B. J. M. Jansen and A. de Groot, Nat. Prod. Rep. 1991, 8, 309.
- 11. K. Mori and H. Watanabe, Tetrahedron 1986, 42, 273.

(Received in UK 23 May 1994)